Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorButuc, MC-
dc.contributor.authorBarlat, F-
dc.contributor.authorGracio, JJ-
dc.contributor.authorVincze, G-
dc.date.accessioned2016-04-01T02:27:31Z-
dc.date.available2016-04-01T02:27:31Z-
dc.date.created2011-01-19-
dc.date.issued2010-04-
dc.identifier.issn1960-6206-
dc.identifier.other2010-OAK-0000022613-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/25171-
dc.description.abstractThe present paper aims at analysing the strain and stress-based forming limits predicted by an advanced sheet metal forming limit model. The onset of localized necking is simulated through the Marciniak-Kuczinsky (MK) analysis [1]., which connects the physically-based hardening model accounting for the evolution of the anisotropic work-hardening induced by the microstructural evolution at large strains of Teodosiu and Hu [2] with the phenomenological anisotropic yield criterion Yld2000-2d (Barlat et al., 2003) [3] Linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of the model is assessed by comparing the predicted and experimental forming limits. The remarkable accuracy of the developed software on predicting the forming limits is obviously due to the performance of the advanced constitutive equations applied on M-K theory, able to describe with great detail the material behaviour. The effect of the strain-induced anisotropy predicted by the microstructural hardening model on the evolution of formability under strain path changes is particularly aimed it.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MATERIAL FORMING-
dc.subjectFormability-
dc.subjectForming limits-
dc.subjectPlastic flow localization-
dc.subjectAnisotropic hardening-
dc.subjectNumerical simulation-
dc.titleSheet metal forming limit predictions based on advanced constitutive equations-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1007/s12289-010-0736-x-
dc.author.googleButuc M.C., Barlat F., Gracio J.J., Vincze G.-
dc.relation.volume3-
dc.relation.startpage179-
dc.relation.lastpage182-
dc.contributor.id10200290-
dc.relation.journalINTERNATIONAL JOURNAL OF MATERIAL FORMING-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCIE-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MATERIAL FORMING, v.3, pp.179 - 182-
dc.identifier.wosid000208613700045-
dc.date.tcdate2019-02-01-
dc.citation.endPage182-
dc.citation.startPage179-
dc.citation.titleINTERNATIONAL JOURNAL OF MATERIAL FORMING-
dc.citation.volume3-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-78651561254-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.type.docTypeArticle-
dc.subject.keywordAuthorFormability-
dc.subject.keywordAuthorForming limits-
dc.subject.keywordAuthorPlastic flow localization-
dc.subject.keywordAuthorAnisotropic hardening-
dc.subject.keywordAuthorNumerical simulation-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse