Open Access System for Information Sharing

Login Library

 

Article
Cited 2 time in webofscience Cited 5 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorKim, J-
dc.contributor.authorHaberkorn, N-
dc.contributor.authorNazaretski, E-
dc.contributor.authorde Paula, R-
dc.contributor.authorTan, T-
dc.contributor.authorXi, XX-
dc.contributor.authorTajima, T-
dc.contributor.authorMovshovich, R-
dc.contributor.authorCivale, L-
dc.date.accessioned2016-04-01T07:42:05Z-
dc.date.available2016-04-01T07:42:05Z-
dc.date.created2015-06-22-
dc.date.issued2015-02-
dc.identifier.issn0038-1098-
dc.identifier.other2015-OAK-0000033358-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/26777-
dc.description.abstractWe report the influence of two-band superconductivity on the flux creep and the critical current densities of a MgB2 thin film. The small magnetic penetration depth of lambda=50 +/- 10 nm at T=4 K is related to a clean pi-band. We find a high self-field critical current density J(C), which is strongly reduced with applied magnetic field, and attribute this to suppression of the superconductivity in the pi-band. The temperature dependence of the creep rate S (T) at low magnetic field can be explained by a simple Anderson-Kim mechanism. The system shows high pinning energies at low field that are strongly suppressed by high field. (C) 2014 Elsevier Ltd. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.relation.isPartOfSolid State Communications-
dc.titleStrong magnetic field dependence of critical current densities and vortex activation energies in an anisotropic clean MgB2 thin film-
dc.typeArticle-
dc.contributor.college물리학과-
dc.identifier.doi10.1016/J.SSC.2014.11.015-
dc.author.googleKim, J-
dc.author.googleHaberkorn, N-
dc.author.googleNazaretski, E-
dc.author.googlede Paula, R-
dc.author.googleTan, T-
dc.author.googleXi, XX-
dc.author.googleTajima, T-
dc.author.googleMovshovich, R-
dc.author.googleCivale, L-
dc.relation.volume204-
dc.relation.startpage56-
dc.relation.lastpage60-
dc.contributor.id11222596-
dc.relation.journalSOLID STATE COMMUNICATIONS-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationSolid State Communications, v.204, pp.56 - 60-
dc.identifier.wosid000348842000013-
dc.date.tcdate2019-02-01-
dc.citation.endPage60-
dc.citation.startPage56-
dc.citation.titleSolid State Communications-
dc.citation.volume204-
dc.contributor.affiliatedAuthorKim, J-
dc.identifier.scopusid2-s2.0-84920199955-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.description.scptc2*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordAuthorSuperconducting materials-
dc.subject.keywordAuthorFilms-
dc.subject.keywordAuthorMagnetic penetration depth-
dc.subject.keywordAuthorVortex pinning-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김지훈KIM, JEE HOON
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse