Open Access System for Information Sharing

Login Library

 

Article
Cited 78 time in webofscience Cited 84 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJoonhee Kang-
dc.contributor.authorHabin Chung-
dc.contributor.authorChilhoon Doh-
dc.contributor.authorKang, B-
dc.contributor.authorByungchan Han-
dc.date.accessioned2016-04-01T07:58:58Z-
dc.date.available2016-04-01T07:58:58Z-
dc.date.created2015-06-12-
dc.date.issued2015-10-20-
dc.identifier.issn0378-7753-
dc.identifier.other2015-OAK-0000032683-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/27087-
dc.description.abstractUnderstanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)(3) (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)(3) (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)(3), LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte. (C) 2015 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.relation.isPartOfJournal of Power Sources-
dc.titleIntegrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/J.JPOWSOUR.2015.05.060-
dc.author.googleJoonhee Kang-
dc.author.googleHabin Chung-
dc.author.googleChilhoon Doh-
dc.author.googleByoungwoo Kang-
dc.author.googleByungchan Han-
dc.relation.volume293-
dc.relation.startpage11-
dc.relation.lastpage16-
dc.contributor.id10976747-
dc.relation.journalJournal of Power Sources-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationJournal of Power Sources, v.293, pp.11 - 16-
dc.identifier.wosid000358809700002-
dc.date.tcdate2019-02-01-
dc.citation.endPage16-
dc.citation.startPage11-
dc.citation.titleJournal of Power Sources-
dc.citation.volume293-
dc.contributor.affiliatedAuthorKang, B-
dc.identifier.scopusid2-s2.0-84929628215-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc26-
dc.description.scptc18*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL STABILITY-
dc.subject.keywordPlusGLASS-CERAMICS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusGE-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSN-
dc.subject.keywordPlusTI-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthorFirst principles-
dc.subject.keywordAuthorSolid-state electrolyte-
dc.subject.keywordAuthorIonic conductivity-
dc.subject.keywordAuthorDiffusion mechanism-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

강병우KANG, BYOUNG WOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse