Open Access System for Information Sharing

Login Library

 

Article
Cited 13 time in webofscience Cited 14 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, HS-
dc.date.accessioned2016-04-01T08:27:08Z-
dc.date.available2016-04-01T08:27:08Z-
dc.date.created2009-09-28-
dc.date.issued2003-09-22-
dc.identifier.issn0924-0136-
dc.identifier.other2003-OAK-0000019012-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/28005-
dc.description.abstractA model for densification of metallic powders is proposed. It involves viscoplastic constitutive equations based on dislocation density evolution and also accounts for effects of porosity using a pressure-dependent critical density yield criterion. The model was applied to the case of cold compaction of nanocrystalline copper under uniaxial compression conditions. Densification behaviour during powder compaction was simulated using an explicit integration method as applied to the dislocation density evolution and the variation of the relative density of the compact. The model was gauged by comparing the experimental data generated by cylindrical die compaction tests on Cu powder with the simulation results. The model accounts for the grain size and the deformation rate dependence on the densification process. The proposed densification model was implemented into a finite element code. The finite element method was applied to simulating room temperature die compaction of nanocrystalline Cu powder in order to investigate the densification behaviour. (C) 2003 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfJOURNAL OF MATERIALS PROCESSING TECHNOLOGY-
dc.subjectpowder compaction-
dc.subjectconstitutive equations-
dc.subjectdislocation model-
dc.subjectcopper-
dc.subjectporous materials model-
dc.subjectfinite element analysis-
dc.subjectPLASTICITY THEORY-
dc.subjectPOROUS METALS-
dc.subjectYIELD-
dc.subjectBEHAVIOR-
dc.subjectDEFORMATION-
dc.subjectCOMPACTION-
dc.subjectCOPPER-
dc.titleDensitication modelling for nanocrystalline metallic powders-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/S0924-0136(03)00776-3-
dc.author.googleKim, HS-
dc.relation.volume140-
dc.relation.startpage401-
dc.relation.lastpage406-
dc.contributor.id10056225-
dc.relation.journalJOURNAL OF MATERIALS PROCESSING TECHNOLOGY-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCIE-
dc.collections.nameConference Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS PROCESSING TECHNOLOGY, v.140, pp.401 - 406-
dc.identifier.wosid000185489700072-
dc.date.tcdate2019-02-01-
dc.citation.endPage406-
dc.citation.startPage401-
dc.citation.titleJOURNAL OF MATERIALS PROCESSING TECHNOLOGY-
dc.citation.volume140-
dc.contributor.affiliatedAuthorKim, HS-
dc.identifier.scopusid2-s2.0-0042911792-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc11-
dc.description.scptc12*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusPLASTICITY THEORY-
dc.subject.keywordPlusPOROUS METALS-
dc.subject.keywordPlusYIELD-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusCOMPACTION-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordAuthorpowder compaction-
dc.subject.keywordAuthorconstitutive equations-
dc.subject.keywordAuthordislocation model-
dc.subject.keywordAuthorcopper-
dc.subject.keywordAuthorporous materials model-
dc.subject.keywordAuthorfinite element analysis-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse