Open Access System for Information Sharing

Login Library

 

Article
Cited 4 time in webofscience Cited 5 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorZhang, M-
dc.contributor.authorLi, L-
dc.contributor.authorSu, Y-
dc.contributor.authorFu, RY-
dc.contributor.authorWan, Z-
dc.contributor.authorDe Cooman, BC-
dc.date.accessioned2016-04-01T09:06:34Z-
dc.date.available2016-04-01T09:06:34Z-
dc.date.created2009-03-05-
dc.date.issued2007-06-
dc.identifier.issn1611-3683-
dc.identifier.other2007-OAK-0000010835-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/29470-
dc.description.abstractThe Forming-Limited Diagram (FLD) of intercritically annealed 0.11C-1.65Mn-0.62Si TRIP-assisted steel was investigated. The high FLD0 value of this new low carbon TRIP steel was indicative of a superior formability. The micro-structural changes during deformation and fracture were studied in detail. The polygonal ferrite phase was found to plastically deform first and deformed most at larger strains. Fracture was initiated by micro-voids nucleated at ferrite grain boundaries, within ferrite grains or at the interface between ferrite and the harder phases. Cracks were formed after micro-voids grew, coalesced, and expanded in one direction. When crack tips reached the bainite phase or the martensite/austenite constituent, the cracks propagated along the boundary of these phases. Cracks reaching retained austenite islands caused stress-induced martensite transformation at the crack tip. The direction of motion of the cracks also changed in this case.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherVERLAG STAHLEISEN MBH-
dc.relation.isPartOfSTEEL RESEARCH INTERNATIONAL-
dc.subjectTRIP steel-
dc.subjectforming-limited curve-
dc.subjectfracture mechanism-
dc.subjectRETAINED AUSTENITE-
dc.subjectPHASE STEELS-
dc.subjectENHANCEMENT-
dc.subjectSTABILITY-
dc.titleForming Limit Curve (FLC) and fracture mechanism of newly developed low-carbon low-silicon TRIP steel-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1002/srin.200706237-
dc.author.googleZhang, M-
dc.author.googleLi, L-
dc.author.googleSu, Y-
dc.author.googleFu, RY-
dc.author.googleWan, Z-
dc.author.googleDe Cooman, BC-
dc.relation.volume78-
dc.relation.issue6-
dc.relation.startpage501-
dc.relation.lastpage505-
dc.contributor.id10200289-
dc.relation.journalSTEEL RESEARCH INTERNATIONAL-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationSTEEL RESEARCH INTERNATIONAL, v.78, no.6, pp.501 - 505-
dc.identifier.wosid000248267600010-
dc.date.tcdate2019-02-01-
dc.citation.endPage505-
dc.citation.number6-
dc.citation.startPage501-
dc.citation.titleSTEEL RESEARCH INTERNATIONAL-
dc.citation.volume78-
dc.contributor.affiliatedAuthorDe Cooman, BC-
dc.identifier.scopusid2-s2.0-34547246078-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc2-
dc.type.docTypeArticle-
dc.subject.keywordPlusRETAINED AUSTENITE-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorTRIP steel-
dc.subject.keywordAuthorforming-limited curve-
dc.subject.keywordAuthorfracture mechanism-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

DE COOMANBRUNO CDE, COOMAN BRUNO C
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse