Open Access System for Information Sharing

Login Library

 

Article
Cited 21 time in webofscience Cited 24 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, H-
dc.contributor.authorAhn, HS-
dc.contributor.authorKwak, HJ-
dc.contributor.authorKim, MH-
dc.contributor.authorKim, DE-
dc.date.accessioned2017-07-19T13:30:51Z-
dc.date.available2017-07-19T13:30:51Z-
dc.date.created2017-02-10-
dc.date.issued2016-12-12-
dc.identifier.issn0003-6951-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37131-
dc.description.abstractA boiling crisis, or critical heat flux (CHF), is a condition that determines the upper bound on removable thermal energy at a boiling surface. In such situations, the liquid cannot wet the surface because a vapor film completely covers it. CHF is enhanced on micro-structured surfaces when under boiling conditions. CHF values were measured for surfaces with rectangular microchannel geometries of various channel widths, (10-30 mu m) and generally increased in value as channel widths decreased. However, the CHF value for the 5-mu m channel-width surface was found to be lower than the wider channel-width surfaces. This observation contradicts models based on vapor recoil and classical instability mechanisms. Hence, we present a fluid-dynamics model that considers capillary pumping and viscous friction. With a focus on the spatial distribution of the liquid penetration region and the local dry spot under a large vapor bubble, this model can accurately predict the CHF variation associated with different channel widths. Published by AIP Publishing.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.relation.isPartOfApplied Physics Letters-
dc.titleBoiling crisis controlled by capillary pumping and viscous friction: Liquid penetration length and dry spot diameter-
dc.typeArticle-
dc.identifier.doi10.1063/1.4971986-
dc.type.rimsART-
dc.identifier.bibliographicCitationApplied Physics Letters, v.109, no.24, pp.243901-
dc.identifier.wosid000391457500044-
dc.date.tcdate2019-02-01-
dc.citation.number24-
dc.citation.startPage243901-
dc.citation.titleApplied Physics Letters-
dc.citation.volume109-
dc.contributor.affiliatedAuthorKim, MH-
dc.identifier.scopusid2-s2.0-85007012034-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc4-
dc.description.scptc3*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCRITICAL HEAT-FLUX-
dc.subject.keywordPlusLINE TENSION-
dc.subject.keywordPlusPOOL-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusSHAPE-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse