Open Access System for Information Sharing

Login Library

 

Article
Cited 37 time in webofscience Cited 38 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLee, CS-
dc.contributor.authorGong, J-
dc.contributor.authorHuong, CV-
dc.contributor.authorOh, DS-
dc.contributor.authorChang, YS-
dc.date.accessioned2017-07-19T13:33:01Z-
dc.date.available2017-07-19T13:33:01Z-
dc.date.created2017-02-16-
dc.date.issued2016-08-15-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37210-
dc.description.abstractThe agglomeration of zero-valent iron nanoparticles (Fe-0 NPs) can significantly decrease the effective surface area of nanoparticles and thus reduce their catalytic performance. To avoid such agglomeration, a two-part Fe-0 NP-immobilization approach was developed: (1) The fabrication of a macroporous alginate substrate (MAS) that provided a large surface area capable of sustaining a high load of stable and well-dispersed Fe-0 NPs (26.06 wt.%). (2) A facile chemical reductive growth procedure to generate Fe-0 NPs (ca. 50-100 nm) that are covalently anchored to the surface of the MAS. The macroporous alginate substrate-supported Fe-0 nanoparticles (Fe-0 NPs/MAS) removed >96.5% of nitrates from an aqueous solution within 30 min, whereas unsupported Fe-0 NPs removed only 44.7% of nitrates over a longer period of time. These results demonstrate that MAS acts in a way to prevent the agglomeration of Fe-0 NPs and, in turn, to promote their redox activity compared to unsupported Fe-0 NPs. On the basis of our experimental results, a grow mechanism of Fe-0 NPs on the MAS was proposed, and potential implications for environmental applications of Fe-0 NPs/MAS were discussed. (C) 2016 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfChemical Engineering Journal-
dc.titleMacroporous Alginate Substrate-Bound Growth of Fe0 Nanoparticles with High Redox Activities for Nitrate Removal from Aqueous Solutions-
dc.typeArticle-
dc.identifier.doi10.1016/J.CEJ.2016.03.113-
dc.type.rimsART-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.298, pp.206 - 213-
dc.identifier.wosid000377309800022-
dc.date.tcdate2019-02-01-
dc.citation.endPage213-
dc.citation.startPage206-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume298-
dc.contributor.affiliatedAuthorChang, YS-
dc.identifier.scopusid2-s2.0-84964372787-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc13-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusZERO-VALENT IRON-
dc.subject.keywordPlusMAGNETIC NANOPARTICLES-
dc.subject.keywordPlusTCE DECHLORINATION-
dc.subject.keywordPlusMESOPOROUS SILICA-
dc.subject.keywordPlusSUPPORTED NZVI-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusAGGREGATION-
dc.subject.keywordPlusGROUNDWATER-
dc.subject.keywordPlusREACTIVITY-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordAuthorAlginate-
dc.subject.keywordAuthorNanoscale zero-valent iron-
dc.subject.keywordAuthorNitrate-
dc.subject.keywordAuthorReductive growth-
dc.subject.keywordAuthorAgglomeration-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장윤석CHANG, YOON-SEOK
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse