Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorWen, W-
dc.contributor.authorBorodachenkova, M-
dc.contributor.authorBarlat, F-
dc.contributor.authorLiao, J-
dc.contributor.authorGracio, JJ-
dc.date.accessioned2017-07-19T13:48:18Z-
dc.date.available2017-07-19T13:48:18Z-
dc.date.created2017-02-27-
dc.date.issued2016-07-
dc.identifier.issn1611-3683-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37631-
dc.description.abstractA hardening model that considers the dislocation reversal-related mechanisms is applied to predict the mechanical behavior of low carbon (LC) and twinning-induced plasticity (TWIP) steels under forward-reverse shear test with various pre-strain levels. The predicted results are presented in terms of stress-strain response and texture evolution. It is shown that the proposed model, embedded in the visco-plastic self-consistent (VPSC) framework, well captures the changes in the reloading yield stress and the hardening evolution due to the strain path reversal. The contributions of the different mechanisms are also discussed.-
dc.languageEnglish-
dc.publisherwiley-
dc.relation.isPartOfSTEEL RESEARCH INTERNATIONAL-
dc.titleModeling of the Mechanical Response During Reversal Shear Loading: Application to Steels-
dc.typeArticle-
dc.identifier.doi10.1002/SRIN.201500232-
dc.type.rimsART-
dc.identifier.bibliographicCitationSTEEL RESEARCH INTERNATIONAL, v.87, no.7, pp.850 - 858-
dc.identifier.wosid000385610500005-
dc.date.tcdate2018-03-23-
dc.citation.endPage858-
dc.citation.number7-
dc.citation.startPage850-
dc.citation.titleSTEEL RESEARCH INTERNATIONAL-
dc.citation.volume87-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-84949519979-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.scptc0*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRAIN-PATH CHANGES-
dc.subject.keywordPlusWORK-HARDENING BEHAVIOR-
dc.subject.keywordPlusTEXTURE EVOLUTION-
dc.subject.keywordPlusZIRCONIUM ALLOYS-
dc.subject.keywordPlusPLASTICITY MODEL-
dc.subject.keywordPlusPOLYCRYSTALS-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusALUMINUM-
dc.subject.keywordAuthorconstitutive model-
dc.subject.keywordAuthorcrystallographic plasticity-
dc.subject.keywordAuthorsteels-
dc.subject.keywordAuthorstrain path change-
dc.subject.keywordAuthortexture-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse