Open Access System for Information Sharing

Login Library

 

Article
Cited 49 time in webofscience Cited 52 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJong Guk Kim-
dc.contributor.authorYoungmin Kim-
dc.contributor.authorYuseong Noh-
dc.contributor.authorKim, WB-
dc.date.accessioned2017-07-19T13:52:28Z-
dc.date.available2017-07-19T13:52:28Z-
dc.date.created2017-02-28-
dc.date.issued2014-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37778-
dc.description.abstractIn this paper, carbon-decorated ZnFe2O4 nanowires, having one-dimensional geometry with diameters of 70-150 nm and lengths of several micrometers, were prepared and used as a highly reversible lithium ion anode material. They can be obtained from calcination of glucose-coated ZnFe2(C2O4)(3) nanowires, which were prepared in glucose containing microemulsion solutions. The physicochemical properties of carbon-coated ZnFe2O4 nanowires were investigated by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The carbon-coated ZnFe2O4 nanowires showed a substantially increased discharge capacity of ca. 1285.1 mA h g(-1) at the first cycle as compared with non-carbon-coated ZnFe2O4 nanowires (ca. 1024.3 mA h g(-1)) and ZnFe2O4 nanoparticles (ca. 1148.7 mA h g(-1)). Moreover, the discharge capacity of the carbon-coated ZnFe2O4 nanowires was maintained with no degradation even after 100 charge/discharge cycles. The high cycling durability, rate capability, and coulombic efficiency suggest that the carbon-coated ZnFe2O4 nanowires prepared here can be promising anode candidates for a highly reversible lithiumstorage electrode.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.relation.isPartOfRSC Advances-
dc.titleFormation of Carbon-coated ZnFe2O4 Nanowires and Their Highly Reversible Lithium Storage Properties-
dc.typeArticle-
dc.identifier.doi10.1039/C4RA02095B-
dc.type.rimsART-
dc.identifier.bibliographicCitationRSC Advances, v.4, no.53, pp.27714 - 27721-
dc.identifier.wosid000339012400012-
dc.date.tcdate2019-02-01-
dc.citation.endPage27721-
dc.citation.number53-
dc.citation.startPage27714-
dc.citation.titleRSC Advances-
dc.citation.volume4-
dc.contributor.affiliatedAuthorKim, WB-
dc.identifier.scopusid2-s2.0-84903852710-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc31-
dc.description.scptc23*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusLI-ION BATTERIES-
dc.subject.keywordPlusCAPACITY ANODE MATERIAL-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusNANORODS-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김원배KIM, WON BAE
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse