Open Access System for Information Sharing

Login Library

 

Article
Cited 162 time in webofscience Cited 166 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorDongwhi Choi-
dc.contributor.authorDo Wan Kim-
dc.contributor.authorDonghyeon Yoo-
dc.contributor.authorKyoung Je Cha-
dc.contributor.authorMoonwoo La-
dc.contributor.authorDong Sung Kim-
dc.date.accessioned2018-01-04T06:51:39Z-
dc.date.available2018-01-04T06:51:39Z-
dc.date.created2017-05-16-
dc.date.issued2017-06-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/39103-
dc.description.abstractThe successive process of contact and detachment of aqueous liquid from the solid surface with its resultant net electrical charge generation is termed as "discrete liquid-solid contact electrification", which is unobtrusively ubiquitous in our daily life. So far, the natural occurrence of discrete liquid-solid contact electrification on surfaces in nature has not been investigated and reported despite the beneficial characteristics of such surfaces. This study firstly reveals the existence of the discrete liquid-solid contact electrification phenomenon and concomitant net electrical charge generation on the natural lotus leaf surface. To advantageously utilize the generated net electrical charges, for the first time, the naturally occurring surface is directly employed to fabricate the natural lotus leaf-TENG, called the LL-TENG. The further investigation about the electricity generation is continued by altering contact material of the LL-TENG to fluoropolymer while maintaining the lotus leaf's superior surface characteristics, in a simple and cost-effective manner via thermal nanoimprinting. The artificially modified TENG not only significantly increases the amount of the generated electricity, but also shows sustained electrical output performance even after 1 month of exposure in the external dusty environment with the help of the outstanding "lotus effect".-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.relation.isPartOfNANO ENERGY-
dc.titleSpontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf-
dc.typeArticle-
dc.identifier.doi10.1016/J.NANOEN.2017.04.026-
dc.type.rimsART-
dc.identifier.bibliographicCitationNANO ENERGY, v.36, pp.250 - 259-
dc.identifier.wosid000402704000027-
dc.date.tcdate2018-12-01-
dc.citation.endPage259-
dc.citation.startPage250-
dc.citation.titleNANO ENERGY-
dc.citation.volume36-
dc.contributor.affiliatedAuthorDongwhi Choi-
dc.contributor.affiliatedAuthorDo Wan Kim-
dc.contributor.affiliatedAuthorDonghyeon Yoo-
dc.contributor.affiliatedAuthorDong Sung Kim-
dc.identifier.scopusid2-s2.0-85018728271-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc8-
dc.description.scptc5*
dc.date.scptcdate2018-05-121*
dc.type.docTypeARTICLE-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordAuthorBiomimetic engineering-
dc.subject.keywordAuthorLiquid-solid contact electrification-
dc.subject.keywordAuthorLotus leaf-
dc.subject.keywordAuthorThermal nanoimprinting-
dc.subject.keywordAuthorTriboelectric nanogenerator-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김동성KIM, DONG SUNG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse