Open Access System for Information Sharing

Login Library

 

Article
Cited 3 time in webofscience Cited 6 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorBhandari, Sagar-
dc.contributor.authorLee, Gil-Ho-
dc.contributor.authorKim, Philip-
dc.contributor.authorWestervelt, Robert M.-
dc.date.accessioned2018-01-04T10:42:06Z-
dc.date.available2018-01-04T10:42:06Z-
dc.date.created2017-08-17-
dc.date.issued2017-07-
dc.identifier.issn0361-5235-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/39203-
dc.description.abstractWe have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN-graphene-hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.relation.isPartOfJOURNAL OF ELECTRONIC MATERIALS-
dc.titleAnalysis of Scanned Probe Images for Magnetic Focusing in Graphene-
dc.typeArticle-
dc.identifier.doi10.1007/S11664-017-5350-Y-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF ELECTRONIC MATERIALS, v.46, no.7, pp.3837 - 3841-
dc.identifier.wosid000403016800004-
dc.date.tcdate2019-02-01-
dc.citation.endPage3841-
dc.citation.number7-
dc.citation.startPage3837-
dc.citation.titleJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.volume46-
dc.contributor.affiliatedAuthorLee, Gil-Ho-
dc.identifier.scopusid2-s2.0-85013426744-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.description.scptc2*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorScanning probe microscopy theory-
dc.subject.keywordAuthorballistic transport-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorsimulation-
dc.subject.keywordAuthormagnetic focusing-
dc.subject.keywordAuthorelectron trajectories-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse