Open Access System for Information Sharing

Login Library

 

Article
Cited 25 time in webofscience Cited 30 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, Joon Young-
dc.contributor.authorLee, Gil-Ho-
dc.contributor.authorJo, Janghyun-
dc.contributor.authorCheng, Austin K.-
dc.contributor.authorYoon, Hosang-
dc.contributor.authorWatanabe, Kenji-
dc.contributor.authorTaniguchi, Takashi-
dc.contributor.authorKim, Miyoung-
dc.contributor.authorKim, Philip-
dc.contributor.authorYi, Gyu-Chul-
dc.date.accessioned2018-01-04T11:12:05Z-
dc.date.available2018-01-04T11:12:05Z-
dc.date.created2017-08-17-
dc.date.issued2016-09-
dc.identifier.issn2053-1583-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/39242-
dc.description.abstractWe report the molecular beam epitaxial growth and characterization of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride (h-BN). A two-step growth was developed, enhancing both the surface coverage and crystallinity of the films on h-BN. High-resolution transmission electron microscopy study showed an atomically abrupt and epitaxial interface formation between the h-BN substrate and Bi2Se3. We performed gate tuned magnetotransport characterizations of the device fabricated on the thin film and confirmed a high mobility surface state at the Bi2Se3/h-BN interface. The Berry phase obtained from Shubnikov-de Haas oscillations suggested this interfacial electronic state is a topologically protected Dirac state.-
dc.languageEnglish-
dc.publisherIOP Publishing-
dc.relation.isPartOf2D Materials-
dc.titleMolecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride-
dc.typeArticle-
dc.identifier.doi10.1088/2053-1583/3/3/035029-
dc.type.rimsART-
dc.identifier.bibliographicCitation2D Materials, v.3, no.3, pp.35029-
dc.identifier.wosid000385420600008-
dc.date.tcdate2019-02-01-
dc.citation.number3-
dc.citation.startPage35029-
dc.citation.title2D Materials-
dc.citation.volume3-
dc.contributor.affiliatedAuthorLee, Gil-Ho-
dc.identifier.scopusid2-s2.0-84992410855-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc3-
dc.description.scptc3*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusCONDUCTION-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusGAP-
dc.subject.keywordAuthortopological insulator-
dc.subject.keywordAuthorhexagonal boron nitride-
dc.subject.keywordAuthormolecular beam epitaxy-
dc.subject.keywordAuthorbismuth selenide-
dc.subject.keywordAuthormagnetotransport-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse