Open Access System for Information Sharing

Login Library

 

Article
Cited 217 time in webofscience Cited 221 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLEE, JANG SIK-
dc.contributor.authorMin-Kyu Kim-
dc.date.accessioned2018-05-04T02:34:04Z-
dc.date.available2018-05-04T02:34:04Z-
dc.date.created2018-03-02-
dc.date.issued2018-01-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/41194-
dc.description.abstractThe development of electronic devices possessing the functionality of biological synapses is a crucial step toward replicating the capabilities of the human brain. Of the various materials that have been used to realize artificial synapses, renewable natural materials have the advantages of being abundant, inexpensive, biodegradable, and ecologically benign. In this study, we report a biocompatible artificial synapse based on a matrix of the biopolymer iota-carrageenan (iota-car), which exploits Ag dynamics. This artificial synapse emulates the short-term plasticity (STP), paired-pulse facilitation (PPF), and transition from STP to long-term potentiation (LTP) of a biological synapse. The above-mentioned characteristics are realized by exploiting the similarities between the Ag dynamics in the iota-car matrix and the Ca2+ dynamics in a biological synapse. By demonstrating a method that uses biomaterials and Ag dynamics to emulate synaptic functions, this study confirms that iota-car has the potential for constructing neuromorphic systems that use biocompatible artificial synapses.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS Nano-
dc.subjectRESISTIVE SWITCHING MEMORIES-
dc.subjectSYNAPTIC PLASTICITY-
dc.subjectMEMRISTIVE DEVICES-
dc.subjectSYSTEMS-
dc.subjectELECTROLYTES-
dc.subjectCARRAGEENAN-
dc.subjectFILAMENT-
dc.subjectSYNAPSES-
dc.subjectGROWTH-
dc.subjectIMPLEMENTATION-
dc.titleShort-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.7b08331-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Nano, v.12, no.2, pp.1680 - 1687-
dc.identifier.wosid000426615600078-
dc.date.tcdate2019-02-01-
dc.citation.endPage1687-
dc.citation.number2-
dc.citation.startPage1680-
dc.citation.titleACS Nano-
dc.citation.volume12-
dc.contributor.affiliatedAuthorLEE, JANG SIK-
dc.contributor.affiliatedAuthorMin-Kyu Kim-
dc.identifier.scopusid2-s2.0-85042712871-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc16-
dc.type.docTypeArticle-
dc.subject.keywordPlusRESISTIVE SWITCHING MEMORIES-
dc.subject.keywordPlusSYNAPTIC PLASTICITY-
dc.subject.keywordPlusMEMRISTIVE DEVICES-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusCARRAGEENAN-
dc.subject.keywordPlusFILAMENT-
dc.subject.keywordPlusSYNAPSES-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusIMPLEMENTATION-
dc.subject.keywordAuthorartificial biosynapses-
dc.subject.keywordAuthornatural materials-
dc.subject.keywordAuthorsolution processes-
dc.subject.keywordAuthorbiocompatibility-
dc.subject.keywordAuthorion dynamics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이장식LEE, JANG SIK
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse