Open Access System for Information Sharing

Login Library

 

Article
Cited 22 time in webofscience Cited 23 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorGan, W-
dc.contributor.authorBong, H.J-
dc.contributor.authorLim, H-
dc.contributor.authorBoger, R-
dc.contributor.authorBARLAT, FREDERIC GERARD-
dc.contributor.authorWagoner, R.H-
dc.date.accessioned2018-05-04T02:41:50Z-
dc.date.available2018-05-04T02:41:50Z-
dc.date.created2018-02-26-
dc.date.issued2017-01-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/41295-
dc.description.abstractWrought Al-Ge-Si alloys were designed and produced to ensure dislocation bypass strengthening ("hard pin" precipitates) without significant precipitate cutting/shearing ("soft pin" precipitates). These unusual alloys were processed from the melt, solution heat treated and aged. Aging curves at temperatures of 120, 160, 200 and 240 degrees C were established and the corresponding precipitate spacings, sizes, and morphologies were measured using TEM. The role of non-shearable precipitates in determining the magnitude of Bauschinger was revealed using large-strain compression/tension tests. The effect of precipitates on the Bauschinger response was stronger than that of grain boundaries, even for these dilute alloys. The Bauschinger effect increases dramatically from the under-aged to the peak aged condition and remains constant or decreases slowly through over-aging. This is consistent with reported behavior for Al-Cu alloys (maximum effect at peak aging) and for other Al alloys (increasing through over-aging) such as Al-Cu-Li, Al 6111, Al 2524, and Al 6013. The Al-Ge-Si alloy response was simulated with three microstructural models, including a novel SD (SuperDislocation) model, to reveal the origins of the Bauschinger effect in dilute precipitation-hardened / bypass alloys. The dominant mechanism is related to the elastic interaction of polarized dislocation arrays (generalized pile-up or bow-out model) at precipitate obstacles. Such effects are ignored in continuum and crystal plasticity models.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.subjectWORK-HARDENING BEHAVIOR-
dc.subjectPLANE-STRAIN DEFORMATION-
dc.subjectALUMINUM SINGLE-CRYSTALS-
dc.subjectIF STEEL-
dc.subjectPLASTIC ANISOTROPY-
dc.subjectINTERNAL-STRESSES-
dc.subjectAL-(SI,GE) ALLOYS-
dc.subjectHARDENING/SOFTENING BEHAVIOR-
dc.subjectDISLOCATION DENSITIES-
dc.subjectMETALLIC MATERIALS-
dc.titleMechanism of the Bauschinger effect in Al-Ge-Si Alloys-
dc.typeArticle-
dc.identifier.doi10.1016/j.msea.2016.12.020-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.684, pp.353 - 372-
dc.identifier.wosid000393938300044-
dc.date.tcdate2019-02-01-
dc.citation.endPage372-
dc.citation.startPage353-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume684-
dc.contributor.affiliatedAuthorBARLAT, FREDERIC GERARD-
dc.identifier.scopusid2-s2.0-85007092536-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.type.docTypeArticle-
dc.subject.keywordPlusWORK-HARDENING BEHAVIOR-
dc.subject.keywordPlusPLANE-STRAIN DEFORMATION-
dc.subject.keywordPlusALUMINUM SINGLE-CRYSTALS-
dc.subject.keywordPlusIF STEEL-
dc.subject.keywordPlusPLASTIC ANISOTROPY-
dc.subject.keywordPlusINTERNAL-STRESSES-
dc.subject.keywordPlusAL-(SI,GE) ALLOYS-
dc.subject.keywordPlusHARDENING/SOFTENING BEHAVIOR-
dc.subject.keywordPlusDISLOCATION DENSITIES-
dc.subject.keywordPlusMETALLIC MATERIALS-
dc.subject.keywordAuthorAl-Ge-Si-
dc.subject.keywordAuthorBauschinger effect-
dc.subject.keywordAuthorPrecipitate-
dc.subject.keywordAuthorOrowan bypass-
dc.subject.keywordAuthorSuper-Dislocation model-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse