Open Access System for Information Sharing

Login Library

 

Article
Cited 58 time in webofscience Cited 61 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorVishwakarma, N.K.-
dc.contributor.authorSingh, A.K.-
dc.contributor.authorHwang, Y.-H.-
dc.contributor.authorKo, D.-H.-
dc.contributor.authorKim, J.-O.-
dc.contributor.authorBabu, A.G.-
dc.contributor.authorKim, D.-P.-
dc.date.accessioned2018-06-15T05:42:23Z-
dc.date.available2018-06-15T05:42:23Z-
dc.date.created2017-12-21-
dc.date.issued2017-03-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/50757-
dc.description.abstractSimultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. ? 2017 The Author(s).-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature Communications-
dc.titleIntegrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow-
dc.typeArticle-
dc.identifier.doi10.1038/ncomms14676-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Communications, v.8-
dc.identifier.wosid000395504400001-
dc.date.tcdate2019-02-01-
dc.citation.titleNature Communications-
dc.citation.volume8-
dc.contributor.affiliatedAuthorHwang, Y.-H.-
dc.contributor.affiliatedAuthorKim, D.-P.-
dc.identifier.scopusid2-s2.0-85014703467-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc15-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE CAPTURE-
dc.subject.keywordPlusPROPARGYLIC AMINES-
dc.subject.keywordPlusORGANIC-SYNTHESIS-
dc.subject.keywordPlusATMOSPHERIC CO2-
dc.subject.keywordPlusHYDROGENATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusMETHANOL-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusMICROREACTOR-
dc.subject.keywordPlusCONVERSION-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김동표KIM, DONG PYO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse