Open Access System for Information Sharing

Login Library

 

Article
Cited 14 time in webofscience Cited 14 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorShim, Je-Ho-
dc.contributor.authorSyed, Akbar Ali-
dc.contributor.authorKim, Chul-Hoon-
dc.contributor.authorLee, Kyung Min-
dc.contributor.authorPark, Seung-Young-
dc.contributor.authorJeong, Jong-Ryul-
dc.contributor.authorKim, Dong-Hyun-
dc.contributor.authorKim, Dong Eon-
dc.date.accessioned2018-07-16T09:44:25Z-
dc.date.available2018-07-16T09:44:25Z-
dc.date.created2017-12-04-
dc.date.issued2017-10-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/92008-
dc.description.abstractThe magnetic cooling effect originates from a large change in entropy by the forced magnetization alignment, which has long been considered to be utilized as an alternative environment-friendly cooling technology compared to conventional refrigeration. However, an ultimate timescale of the magnetic cooling effect has never been studied yet. Here, we report that a giant magnetic cooling (up to 200 K) phenomenon exists in the Co/Pt nanomultilayers on a femtosecond timescale during the photoinduced demagnetization and remagnetization, where the disordered spins are more rapidly aligned, and thus magnetically cooled, by the external magnetic field via the lattice-spin interaction in the multilayer system. These findings were obtained by the extensive analysis of time-resolved magneto-optical responses with systematic variation of laser fluence as well as external field strength and direction. Ultrafast giant magnetic cooling observed in the present study can enable a new avenue to the realization of ultrafast magnetic devices.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature Communications-
dc.titleUltrafast giant magnetic cooling effect in ferromagnetic Co/Pt multilayers-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-017-00816-w-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Communications, v.8-
dc.identifier.wosid000412493800002-
dc.date.tcdate2019-02-01-
dc.citation.titleNature Communications-
dc.citation.volume8-
dc.contributor.affiliatedAuthorKim, Dong-Hyun-
dc.contributor.affiliatedAuthorKim, Dong Eon-
dc.identifier.scopusid2-s2.0-85030752806-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusSPIN-LATTICE-RELAXATION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusELECTRON-
dc.subject.keywordPlusANISOTROPY-
dc.subject.keywordPlusNICKEL-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusMAGNETOOPTICS-
dc.subject.keywordPlusFEMTOSECOND-
dc.subject.keywordPlusHYSTERESIS-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse