Open Access System for Information Sharing

Login Library

 

Article
Cited 166 time in webofscience Cited 172 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKang, M.-
dc.contributor.authorKim, B.-
dc.contributor.authorRyu, S.H.-
dc.contributor.authorJung, S.W.-
dc.contributor.authorKim, J.-
dc.contributor.authorMoreschini, L.-
dc.contributor.authorJozwiak, C.-
dc.contributor.authorRotenberg, E.-
dc.contributor.authorBostwick, A.-
dc.contributor.authorKim, K.S.-
dc.date.accessioned2018-07-17T10:47:06Z-
dc.date.available2018-07-17T10:47:06Z-
dc.date.created2017-12-21-
dc.date.issued2017-03-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/92123-
dc.description.abstractvan der Waals two-dimensional (2D) semiconductors have emerged as a class of materials with promising device characteristics owing to the intrinsic band gap. For realistic applications, the ideal is to modify the band gap in a controlled manner by a mechanism that can be generally applied to this class of materials. Here, we report the observation of a universally tunable band gap in the family of bulk 2H transition metal dichalcogenides (TMDs) by in situ surface doping of Rb atoms. A series of angle-resolved photoemission spectra unexceptionally shows that the band gap of TMDs at the zone corners is modulated in the range of 0.8-2.0 eV, which covers a wide spectral range from visible to near-infrared, with a tendency from indirect to direct band gap. A key clue to understanding the mechanism of this band-gap engineering is provided by the spectroscopic signature of symmetry breaking and resultant spin-splitting, which can be explained by the formation of 2D electric dipole layers within the surface bilayer of TMDs. Our results establish the surface Stark effect as a universal mechanism of band-gap engineering on the basis of the strong 2D nature of van der Waals semiconductors. ? 2017 American Chemical Society.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfNANO LETTERS-
dc.subjectIII-V semiconductors-
dc.subjectInfrared devices-
dc.subjectSemiconductor doping-
dc.subjectStark effect-
dc.subjectTransition metals-
dc.subjectVan der Waals forces-
dc.subjectAngle-resolved photoemission-
dc.subjectBand gap engineering-
dc.subjectDevice characteristics-
dc.subjectGiant stark effects-
dc.subjectRealistic applications-
dc.subjectSpectroscopic signatures-
dc.subjectTransition metal dichalcogenides-
dc.subjectTwo-dimensional semiconductors-
dc.subjectEnergy gap-
dc.titleUniversal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.6b04775-
dc.type.rimsART-
dc.identifier.bibliographicCitationNANO LETTERS, v.17, no.3, pp.1610 - 1615-
dc.identifier.wosid000396185800042-
dc.date.tcdate2019-02-01-
dc.citation.endPage1615-
dc.citation.number3-
dc.citation.startPage1610-
dc.citation.titleNANO LETTERS-
dc.citation.volume17-
dc.contributor.affiliatedAuthorJung, S.W.-
dc.contributor.affiliatedAuthorKim, J.-
dc.contributor.affiliatedAuthorKim, K.S.-
dc.identifier.scopusid2-s2.0-85014905928-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc31-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusFIELD-
dc.subject.keywordPlusWSE2-
dc.subject.keywordAuthorBand-gap engineering-
dc.subject.keywordAuthortwo-dimensional semiconductors-
dc.subject.keywordAuthorgiant Stark effect-
dc.subject.keywordAuthortransition-metal dichalcogenides-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse