Open Access System for Information Sharing

Login Library

 

Article
Cited 170 time in webofscience Cited 174 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPARK, SOOJIN-
dc.contributor.authorWang, Bin-
dc.contributor.authorRyu, Jaegeon-
dc.contributor.authorChoi, Sungho-
dc.contributor.authorZhang, Xinghao-
dc.contributor.authorPribat, Didier-
dc.contributor.authorLi, Xianglong-
dc.contributor.authorZhi, Linjie-
dc.contributor.authorRuoff, Rodney-
dc.date.accessioned2019-03-07T01:09:13Z-
dc.date.available2019-03-07T01:09:13Z-
dc.date.created2019-02-27-
dc.date.issued2019-02-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/94903-
dc.description.abstractFast charging rate and large energy storage are becoming key elements for the development of next-generation batteries, targeting high-performance electric vehicles. Developing electrodes with high volumetric and gravimetric capacity that could be operated at a high rate is the most challenging part of this process. Using silicon as the anode material, which exhibits the highest theoretical capacity as a lithium-ion battery anode, we report a binder-free electrode that interconnects carbon-sheathed porous silicon nanowires into a coral-like network and shows fast charging performance coupled to high energy and power densities when integrated into a full cell with a high areal capacity loading. The combination of interconnected nanowires, porous structure, and a highly conformal carbon coating in a single system strongly promotes the reaction kinetics of the electrode. This leads to fast-charging capability while maintaining the integrity of the electrode without structural collapse and, thus, stable cycling performance without using binder and conductive additives. Specifically, this anode shows high specific capacities (over 1200 mAh g(-1)) at an ultrahigh charging rate of 7 C over 500 charge-discharge cycles. When coupled with a commercial LiCoO2 or LiFePO4 cathode in a full cell, it delivers a volumetric energy density of 1621 Wh L-1 with a LiCoO2 cathode and a power density of 7762 W L-1 with a LiFePO4 cathode.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS NANO-
dc.titleUltrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.8b09034-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS NANO, v.13, no.2, pp.2307 - 2315-
dc.identifier.wosid000460199400129-
dc.citation.endPage2315-
dc.citation.number2-
dc.citation.startPage2307-
dc.citation.titleACS NANO-
dc.citation.volume13-
dc.contributor.affiliatedAuthorPARK, SOOJIN-
dc.identifier.scopusid2-s2.0-85061249705-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorfast charging-
dc.subject.keywordAuthorinterconnection-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthorsilicon nanowires-
dc.subject.keywordAuthorvolumetric energy density-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박수진PARK, SOOJIN
Dept of Chemistry
Read more

Views & Downloads

Browse