Open Access System for Information Sharing

Login Library

 

Article
Cited 68 time in webofscience Cited 72 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorHiral Patel-
dc.contributor.authorLujie Huang-
dc.contributor.authorCheol-Joo Kim-
dc.contributor.authorJiwoong Park-
dc.contributor.authorMatt W. Graham-
dc.date.accessioned2019-06-05T07:30:03Z-
dc.date.available2019-06-05T07:30:03Z-
dc.date.created2019-03-15-
dc.date.issued2019-03-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/99055-
dc.description.abstractTwisted bilayer graphene (tBLG) is a metallic material with two degenerate van Hove singularity transitions that can rehybridize to form interlayer exciton states. Here we report photoluminescence (PL) emission from tBLG after resonant 2-photon excitation, which tunes with the interlayer stacking angle, θ. We spatially image individual tBLG domains at room-temperature and show a five-fold resonant PL-enhancement over the background hot-electron emission. Prior theory predicts that interlayer orbitals mix to create 2-photon-accessible strongly-bound (~0.7 eV) exciton and continuum-edge states, which we observe as two spectral peaks in both PL excitation and excited-state absorption spectra. This peak splitting provides independent estimates of the exciton binding energy which scales from 0.5–0.7 eV with θ = 7.5° to 16.5°. A predicted vanishing exciton-continuum coupling strength helps explain both the weak resonant PL and the slower 1 ps−1 exciton relaxation rate observed. This hybrid metal-exciton behavior electron thermalization and PL emission are tunable with stacking angle for potential enhancements in optoelectronic and fast-photosensing graphene-based applications.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature Communications-
dc.titleStacking angle-tunable Photoluminescence from Interlayer Excitons in Twisted Bilayer Graphene-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-019-09097-x-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Communications, v.10, pp.1445-
dc.identifier.wosid000462722200002-
dc.citation.startPage1445-
dc.citation.titleNature Communications-
dc.citation.volume10-
dc.contributor.affiliatedAuthorCheol-Joo Kim-
dc.identifier.scopusid2-s2.0-85063740283-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeARTICLE-
dc.subject.keywordPlusBINDING-ENERGY-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김철주KIM, CHEOL JOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse