Open Access System for Information Sharing

Login Library

 

Article
Cited 45 time in webofscience Cited 49 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorCHAE, SUHUN-
dc.contributor.authorSUN, YUCHENG-
dc.contributor.authorCHOI, YEONGJIN-
dc.contributor.authorHA, DONG HEON-
dc.contributor.authorJEON, INHO-
dc.contributor.authorCHO, DONG WOO-
dc.date.accessioned2021-06-15T00:50:22Z-
dc.date.available2021-06-15T00:50:22Z-
dc.date.created2021-02-24-
dc.date.issued2021-07-
dc.identifier.issn1758-5082-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/106727-
dc.description.abstractThe tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formation in vitro. Furthermore, in vivo application of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix bioink-based approach.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.relation.isPartOfBIOFABRICATION-
dc.title3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair-
dc.typeArticle-
dc.identifier.doi10.1088/1758-5090/abd159-
dc.type.rimsART-
dc.identifier.bibliographicCitationBIOFABRICATION, v.13, no.3-
dc.identifier.wosid000639512100001-
dc.citation.number3-
dc.citation.titleBIOFABRICATION-
dc.citation.volume13-
dc.contributor.affiliatedAuthorCHAE, SUHUN-
dc.contributor.affiliatedAuthorCHOI, YEONGJIN-
dc.contributor.affiliatedAuthorHA, DONG HEON-
dc.contributor.affiliatedAuthorCHO, DONG WOO-
dc.identifier.scopusid2-s2.0-85105285293-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorspatial gradient-
dc.subject.keywordAuthor3D cell-printing-
dc.subject.keywordAuthorrotator cuff-
dc.subject.keywordAuthortendon-derived decellularized extracellular matrix (TdECM) bioink-
dc.subject.keywordAuthorpolyurethane-
dc.subject.keywordAuthortendon-bone interface-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse